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Abstract

Background: Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial

forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia.

Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-

nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility.

Methods: We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human

studies of dystonia and genetic variants. The following search terms were included: ‘‘dystonia’’ in combination with the following terms: 1) ‘‘polymorphisms’’ and 2)

‘‘SNPs’’ as free words.

Results: A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1,

PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review.

Discussion: To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to

determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of

dystonia and the net effect of the genes.
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Introduction

Dystonia is a movement disorder with high heterogeneity regarding

phenotypic appearance and etiology.1 The prevalence of dystonia is

estimated to be 16:100,000.2,3 In 2013, a new general definition and

classification of dystonia were introduced by an international panel of

dystonia experts.4 The two main axes of this classification are considered

to be the etiology and the clinical features.4 However, the pathophysio-

logy and cause of most dystonia cases remain largely unknown.5

A polymorphism is a variation in the DNA sequence that occurs in a

population with a frequency of 1 % or higher.6,7 When a variation

occurs in a single nucleotide, at a specific position in the genome, it is

called an SNP (single-nucleotide polymorphism).8,9 SNPs can occur

within coding sequences of genes, non-coding sequences, introns,

or the regions between genes (also known as intergenic regions).10,11

An SNP across a coding sequence of a gene can be characterized as

synonymous (when the protein sequence is not affected) and non-

synonymous (when the amino acid sequence of the protein is altered).10,12

The non-synonymous SNPs are divided into missense (when they result in

a different amino acid) and nonsense (when they result in a premature

stop codon).10,12 Recently, it has been recommended that both terms,

‘‘mutation’’ and ‘‘polymorphism’’, be replaced by the term ‘‘variant’’.13,14

An additional modifier (e.g. pathogenic, benign) to the term ‘‘variant’’

should be used, in order for its pathogenic or benign effect to be

declared.13,14
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The importance of genetic factors was unambiguously demonstrated

with the identification of causative pathogenic variants in monogenic

cases of familial dystonia under the autosomal dominant, autosomal

recessive, or X-linked mode of inheritance.3 Furthermore, a few

candidate gene association studies (CGASs) have suggested that the

presence of specific genetic loci may confer susceptibility to dystonia.15

Genetic variations may affect dystonia’s phenotypic appearance, age at

onset, and spread to adjacent body regions, and may also affect the

penetrance of other pathogenic variants suspected for dystonia.15

Previous reviews have mainly discussed the genetics of dystonia in

general its monogenic forms and its phenotypic divergence.3,16–25

However, genetics of sporadic forms of dystonia with no clearly

discernible family history, and results from case–control studies are

relatively rarely discussed.15,18,25 Therefore, in the present review article,

we discuss the current state of knowledge regarding genetics of dystonia,

by emphasizing the CGASs that have linked single nucleotide poly-

morphisms and variants across genes that predispose to dystonia. Owing

to the lack of a widely accepted nomenclature gene classification system

for dystonia, we have used gene names for loci identification.26 The main

aim of the current comprehensive review is to shed some light on which

polymorphisms predispose for dystonia, and to what extent.

Methods: study identification and selection

In order for any potentially relevant study to be identified, we

searched through the Pubmed database (https://www.ncbi.nlm.nih.

gov/pubmed) for peer-reviewed articles published in English, from its

inception to January 2018, that concerned human studies of dystonia and

genetic polymorphisms. The following search terms were included:

‘‘dystonia’’ in combination with 1) ‘‘polymorphisms’’ and 2) ‘‘SNPs’’ as

free words. The complete search algorithm is available in the S1

Appendix. The last literature search was performed on February 20,

2018. Additionally, reference lists of retrieved articles were examined in

order to identify missing from the initial database search results. The

flowchart presenting the selection procedure of the studies is presented in

Figure 1. Published studies between 1996 and 2017 were included.

The following data were extracted from each study, when possible:

author, year of publication, ethnicity of the studied population,

numbers of cases and controls, age at disease onset, mean age and

gender distribution, tested variants, family history of the participants,

screening or not for the TOR1A �GAG pathogenic variant, correction

for multiple comparisons, assessment of Hardy–Weinberg equilibrium,

and the tested dystonia phenotypes.

Results and discussion

Published studies between August 2001 and September 2017 were

included. Baseline characteristics from studies regarding TOR1A,

BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC,

DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3,

TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS

are presented in Supplementary Tables 1–5. GnomAD frequencies

(http://gnomad.broadinstitute.org/) and the type of individual variants

are available at the S2 Appendix.

TOR1A

The TOR1A gene is a five-exon gene that covers an 11-kb region in

chromosome 9. The TOR1A protein, called TorsinA, belongs to the

family of the AAA+ ATPases. It can be found in the endoplasmic

reticulum and the nuclear envelope of most cells,8 including those of

the central nervous system.18 The function of TorsinA and how

TOR1A gene pathogenic variants lead to dystonia remains largely

unknown.27 TorsinA acts mainly as a molecular chaperone.28 The

molecular and cellular processes in which TorsinA is involved include

the interactions between cytoskeleton and membrane, important

functions of the endoplasmic reticulum and the nuclear envelope,

and the regulation of cellular lipid metabolism.18,29–31 It is

known that TorsinA needs to bind to TOR1AIP2 (Torsin 1A

Interacting Protein 2) or to Heat Shock Protein Family A (Hsp70)

Member 8 (HSPA8) in order to be activated,32 a procedure that

is impaired by the GAG deletion, as has been confirmed by

crystallography.33,34

TOR1A remains the most extensively studied gene in both mono-

genic and sporadic forms of dystonia.15 However, results from case–

control studies yielded conflicting results, with the association being

affected by body distribution, ethnicity, and other phenotypic

manifestations. A number of case–control studies have been conducted

so far35–52 and quite a few TOR1A variants have also been investigated

(rs1801968, rs2296793, rs1182, rs3842225, rs13283584, rs11787741,

rs13297609, rs2287367, rs1043186, and rs35153737). Apart from

case–control studies, a number of variants have been identified through

mutational screening (rs766483672, rs80358233, rs75881350, rs1183,

rs563498119, rs573629050, rs1045441, rs144572721).53 Additionally,

three meta-analyses have been conducted so far examining the effects of

TOR1A gene variants on dystonia.15,39,40 The most recent evidence

stemming from a meta-analysis, reveals a significant association of the

rs1182 (allele frequency [AF]50.1666) and the rs1801968 (AF50.1236

for the G allele and AF54.061e-6 for the C allele) TOR1A variants with

the development of focal dystonia (FD) and writer’s cramp (WC)

respectively.15 Moreover, variants within 39-UTR (untranslated region)

encoded by exon 5 represent an additional functional genetic locus of

TOR1A, though it may be under synergistic action with other TOR1A

genetic variants.15 This comes in accordance with a recent case–control

study, suggesting an association of the rs35153737 in the 39-UTR of

TOR1A with dystonia; a result, though, that has been attributed to

functional variants that are in high linkage disequilibrium (LD).52

From a functional aspect, loci containing the aforementioned

variants appear to have consequences; variants across exon 4 and 39-

UTR encoded by exon 5, in particular, appear to overall influence the

function of the TOR1A gene.15 More specifically, rs1801968 was

confirmed to be associated with reduced penetrance of the �GAG

pathogenic variant in humans.54,55 Regarding the 39-UTR of exon 5,

there is only some indication that specific variants across this region

may have some functional consequences under synergistic action.15,52

Interestingly, based on the results regarding frequencies, computa-

tional analyses and function experiments, rs563498119 in the 39-UTR

of TOR1A was reported to change the expression of the TOR1A gene.53
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The regulation of TOR1A expression, by mutating the conserved

region of the binding site of the human microRNA (hsa-miR-494),

where rs563498119 is located, hints towards hsa-miR-494 being a

possible therapeutic target.53

BDNF and APOE

Among the major mechanisms in dystonia, the reduced inhibition

of the motor system and the increased plasticity are included.56 In

greater detail, increased plasticity in the hand representation area

of the motor cortex has been observed in focal hand dystonia,

blepharospasm (BSP), and cervical dystonia (CD) using high-resolution

transcranial stimulation.57 Consequently, abnormal plasticity within

certain motor cortical circuits may represent a lineament of adult-onset

dystonia forms.57,58

Synaptic plasticity is influenced by the brain-derived neurotrophic

factor (BDNF). A common SNP across the BDNF gene within the

prodomain region is the rs6265 (G/A) (AF50.1896) and it results in

the substitution of Val in amino acid position 66 with Met (ValRMet),

which may influence synaptic plasticity59–61 and is possibly involved in

dystonia development. Healthy carriers of the val66met appear to have

differences in brain structure and abnormal motor cortex plasticity

as well.62,63 Rs6265 has been found to be associated with quite a

few diseases such as Parkinson’s disease, Alzheimer disease (AD),

schizophrenia, bipolar disease, depressive disorder, and panic dis-

orders, although strong evidence has yet to be presented.64–69

The studies that have been conducted so far regarding the role of

the rs6265 on dystonia have yielded conflicting results. More precisely,

rs6265 has been reported to be associated with CD and BSP in

Figure 1. Flow chart presenting the selection of the studies included in the current review.
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multiethnic and Chinese cohorts respectively.70,71 Additionally, higher

frequency of bilateral postural arm tremor in CD patients with the

BDNF Met66Met variant than inVal66Met and Val66Val carriers has

also been observed.72 However, these results have not been replicated

in Serbian, Chinese, Italian, or Caucasian dystonia cohorts.58,73–75 To

date, two meta-analyses have evaluated the effects of rs6265 variant on

dystonia.75,76 The most recent reports a statistically significant overall

effect of the AA genotype on the development of idiopathic dystonia.76

However, the lack of reproducibility of the positive results could be

attributed, among others, to the culture of null hypothesis significance

testing,77 the possible influence of epigenetic mechanisms in the gene

function (such as DNA methylation),78 and to the fact that additional

variants across the BDNF may regulate the level of serum BDNF and

its function.79 BDNF could be considered a potential therapeutic target

in dystonia, as in neurological and psychiatric disorders.80–82

Apolipoprotein E is the product of the APOE gene, which connects

to lipids in order to form lipoproteins. There are at least three alleles

(e2, e3, and e4) of the APOE gene, with the commonest one being the

e3. The main function of lipoproteins is to package cholesterol and

other fats, and transport them throughout tissues including the central

nervous system.83 The e4 allele is associated with an increased risk of

AD compared with the e3 allele, whereas the e2 allele is associated

with decreased risk.84 Like BDNF, APOE may also influence neural

plasticity and remodeling.71,85 In a Japanese cohort, E4 carriers were

shown to develop dystonia on average approximately 10 years earlier

than e4 non-carriers.58 TorsinA is also involved in cellular lipid

metabolism.29 Therefore, variants that influence lipid biology may

contribute to dystonia. Matsumoto et al.85 suggested that the e4 allele

may severely affect neuronal reorganization and this impairment of

neuronal repair may contribute to an earlier age of dystonia onset.

Consequently, it is possible that variants within TOR1A, BDNF, APOE

or even other genes under synergistic action, influence the phenotypic

manifestation of dystonia.

THAP 1

Around a hundred missense, nonsense, and frameshift pathogenic

variants, throughout most part of the coding region of the ‘‘thanatos

associated protein domain containing, apoptosis associated protein 1’’

(THAP1) gene, have been associated with dystonia3,86,87 in a gene-

tically diverse population.18 The THAP1 gene encodes the transcrip-

tion factor THAP1, a zinc finger protein with an amino-terminal

THAP domain, a proline-rich region, and a carboxy-terminal nuclear

domain as well.88 THAP1 is thought to regulate the transcription of

several key genes, TOR1A included.18,89

Case–control studies regarding THAP1 variants are limited35,40

because of the variety and the rarity of THAP1 variants. Therefore,

most findings derive from mutational screening and the comparison

between dystonia cases and healthy individuals.86,87,90–96 However,

there is an indication that the frequency of the C allele of the

c.71+126T.C pathogenic variant was elevated in British dystonia

patients.90 -237_236GA.TT was also over-represented in dystonia

when compared with controls in a European cohort94 but these results

could not be replicated.90,91,97 Furthermore, the IVS2-87 A.G

(rs11989331, AF50.003428) was over-represented in dystonia in an

Indian study.95 The MAF of rs200209986 was also found to be

significantly higher in dystonic patients (MAF50.359%) than in the

controls (MAF50.0318%, p,0.05) in the Vemula et al.96 study and

the 1000 Genomes project (MAF50.0916%, p,0.05), but not when

compared with the EVS database (MAF50.199%, p50.13).

The large amount of THAP1 pathogenic variants linked to dystonia

may suggest an interplay between environmental and genetic factors.98

Further, the type of work or the exposure to environmental factors,

such as pesticides, may possibly predispose to dystonia development in

pathogenic variant carriers.21,86,87

GNAL, TAF1, GCH1, MR-1 (PNKD), SGCE, ATP1A3, PRKRA,

HLA-DRB, CBS, MTHFR, and MS

GNAL (guanine nucleotide-binding protein subunit alpha L) has

been identified as responsible for adult-onset dystonia, which is pri-

marily cervical or cranial.99 A few GNAL variants (rs9303742,

rs9675415, rs1895689, rs8095592, rs72865259, rs1647556, rs200508915,

rs138151459, rs2071140, rs2071141, rs199571902) have been examined

for association with generalized, multifocal, segmental, and focal

dystonia.100 Despite the fact that no strong evidence for association with

dystonia was found, novel variants are constantly reported in single

dystonia patients with various phenotypes,100 leading to approximately 30

different GNAL variants in dystonia patients.3 GNAL encodes guanine

nucleotide-binding protein G subunit alpha [Ga(olf)]. Ga(olf)is involved in

both the direct and indirect pathway to the activation of adenylate

cyclase, by coupling dopamine type 1 receptors and the adenosine A2A

receptors in medium spiny neurons, respectively.99 In fact, the

involvement in the indirect pathway of the activation leads to

the activation of adenylyl cyclase type 5 (AC5). AC5 is encoded by

the adenylyl cyclase 5 (ADCY5) gene, which was recently reported to

be a co-founder of dystonia.101 It is possible that epistasis pheno-

menon with ADCY5 influences the causative effect of GNAL variants.

Newman at al.40 in 2012, apart from TOR1A and THAP1, which are

described in the above sections, genotyped several variants of other

genes as well (TAF1, GCH1, MR-1 (PNKD), SGCE, ATP1A3, and

PRKRA).40 The results were negative regarding quite a few variants

across TAF1, MR-1 (PNKD), SGCE, ATP1A3, and PRKRA, yet weak

associations were observed for the rs12147422 (AF50.217), rs3759664

(AF50.2353), and rs10483639 (AF50.2539) of GCH1 (GTP cyclohy-

drolase 1) variants when the entire, non-homogeneous phenotypic,

dystonia group was compared with controls. The lack of reproduci-

bility of these associations could be explained by the low prevalence of

dystonia, suggesting the need of collaborative studies.102 Nevertheless,

GCH1 belongs to the confirmed causative genes of dopa-responsive

dystonia. Additionally, the penetrance of GCH1 pathogenic variants

appears to be considerably higher in females than in males.103 The

GCH1 gene encodes the rate-limiting enzyme in the biosynthesis of

dopamine via the biopterin pathway. GTP cyclohydrolase1 is involved

in tetrahydrobiopterin neo-synthesis from GTP, as it catalyzes the first

step of this reaction.18 Variants of GHC1 influence enzyme activity,
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leading to a deficiency in dopamine and serotonin.104 Therefore,

a possible role of GCH1 in non-monogenic forms of dystonia should

not be dismissed, as scientific reasoning could not be substituted by

statistical analysis.105

Finally there is no strong evidence for the association between HLA-

DRB variants or variants in the homocysteine pathway (cystathionine

b-synthase [CBS], methionine tetrahydrofolate reductase [MTHFR],

methionine synthase [MS] genes) with dystonia.50

Dopamine pathway genes (DAT1, DRD1, DRD2, DRD3, DRD4,

DRD5, COMT, DAT, TH, MAO-A and -B, DDC, and DBH)

Dystonic movements are considered the result of impaired function

and abnormalities of dopaminergic neurotransmission and signaling

in the basal ganglia.106 The involvement of the dopaminergic system

in the pathophysiology of dystonia has also been enhanced via the

mutated genes of the dopamine pathway in monogenic forms of

dystonia (GCH1).107 Allele 2 of the DRD5 has been associated with

increased risk of CD and BSP in British cohorts.108,109 Allele 6 and

allele 4 of the DRD5 have been associated with CD in British and

Italian cohorts respectively,109,110 thus strongly supporting the invol-

vement of the DRD5 gene in dystonia.111 However, DRD5 has not

been associated with dystonia in Italian, US, and German studies.49,50

Dopamine receptor genes regulate neurotransmission in response to

dopamine.112 Dopamine receptors are divided into two families, based

on either the activation (D1-like receptors: DRD1 and DRD5) or the

inhibition (D2-like receptors: DRD2, DRD3, and DRD4) of adenylate

cyclase.113 Although the negative results in genes of dopamine

signaling pathway (dopamine receptors) are few,49,114,115 Groen

et al.115 suggested that changes in dopamine levels may be secondary

during the dystonia course and that rare single nucleotide variants of

dopamine genes are possibly associated with dystonia.116

ARSG, NALC, OR4X2, COL4A1

To date, only two genome-wide association studies (GWASs) have

been performed in order to identify variants that may predispose to

dystonia.117,118 According to their results, there is a preliminary indi-

cation that arylsulfatase G (ARSG) and sodium leak channel (NALCN)

variants play that role.117,118

In a GWAS executed by Lohmann et al.,117 it was suggested that the

intronic rs11655081 (AF50.181) of the ARSG gene was associated with

musician’s dystonia and writer’s cramp. The missense rs61999318

(AF50.002619) was significantly higher in the group of writer’s cramp

patients than in European Americans in the EVS database (p5

0.0013).119 Functional analysis suggested that rs61999318 may repre-

sent a functional variant, as the underlying amino acid substitution

of isoleucine at position 493 with threonine (p.I493T) appears to

be disease causing.119 ARSG is the protein encoded by ARSG; it

hydrolyzes sulfate esters and is therefore implicated in cell signaling,

synthesis of hormones, and protein degradation.120 Moreover, it may

be involved in neuronal ceroid lipofuscinosis,121 which can present

itself as dystonia.117 In view of the former considerations, ARSG could

be targeted as a gene for further study mainly in task-specific dystonias.

According to the GWAS from Mok et al.,118 the cluster of variants

near exon 1 of NALCN was found nearest to the significance threshold

in a British population with CD. The most statistically significant

variants were NALCN (rs61973742, rs1338051, rs9518385, rs9518384,

rs1338041 rs3916908), COL4A1 (rs619152), RGL1 (rs12132318), OR4X2 3

(rs67863238), intergenic (rs1249277, rs1249281, rs9416795), KIAA1715

(rs10930717), OR4B1 (rs35875350).118 However, a replication of this

GWAS case–control study did not report any association of NALCN,

OR4X2, COL4A1, and intergenic variants,122 and the results for

NALC (rs1338041, rs61973742) were also not reproduced in a

Chinese population.123 NALCN is a voltage-independent and cation-

non-selective channel. Its main function is the leaky sodium transport

across neuronal membranes and the regulation of neuronal excit-

ability.124 In general, variants in genes, whose protein also acts like an ion

channel, are crucial components and may be additional factors for

dystonia development.117 ANO3 is among the confirmed genes that cause

a monogenic form of late-onset craniocervical dystonia, with a possible

effect on the calcium-activated chloride channel.3,125

Concluding remarks

Genetic factors confer susceptibility to dystonia development. More

precisely, based on our review, exon 4 and the 39-UTR of exon 5

represent loci that appear to have a strong influence on the function of

the TOR1A gene, and their pathogenic variants may be associated with

sporadic forms of dystonia, specifically with focal distribution.

Moreover, rs6265 of BDNF appears to be strongly associated with

dystonia as well. As the function of the BDNF gene may be influenced

by other variants, additional loci across it may be worth examining.

Further analysis of the ARSG gene, notably the rs61999318 in focal

task-specific dystonia cohorts and the DRD5 gene in focal dystonia, is

warranted. Additional studies of GCH1 may be required. Owing to

their rarity, THAP1 gene variants are insecure targets for future case–

control studies. The continuing identification of pathogenic variants

that cause monogenic forms of dystonia will lead us to new possible

targets for case–control studies.1,3

Next-generation sequencing has led to the identification of new

dystonia genes on a monthly basis.3,125,126 Therefore, a large amount

of common and rare genetic variants that may predispose to dystonia

have been identified. Also, a few identified variants may affect

penetrance, age at onset, spread to adjacent body, or the phenotype of

dystonia.15 However, it is not prudent to assume that all these genes

truly lead to dystonia, and therefore results need to be interpreted with

caution. Therefore, applying the CGASs approach to next-generation

data could possibly shed some light on the mechanisms of the complex

traits.127

The understanding of the genetic basis of monogenic and sporadic

forms of dystonia will permit the identification and deeper knowledge

of dystonia’s pathogenesis. This will provide physicians with more

personalized tools to manage dystonia in the future, even from the time

of diagnosis, and they may also be used for assessing the biological

progression of the disease and guide the treatment decisions.128

Implications, even at the DNA and/or RNA level, are already
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considered as new possible targeted therapeutic approaches.53,80

The stronger grasp on dystonia’s genetic susceptibility will also

improve genetic testing and counseling.

The lack of validation reproducibility of the positive results could

be attributed to several factors; firstly, the culture of null hypothesis

significance testing.77 Moreover, low power CGASs because of

relatively small sample sizes is a common phenomenon, as the

effective population should ideally be very large (,10,000 individuals)

in order for a modest genetic effect to be identified.129 The interplay

between environmental (e.g. pesticides)86,98 and genetic factors, as well

as among genetic factors,1 may variably determine the penetrance of

pathogenic variants and the phenotype.18,20,86,98,130,131 Furthermore,

the phenotypic divergence of dystonia and the possible classification

bias should be considered, as the majority of the studies were

performed before the new dystonia classification.4,15 Finally, epigenetic

mechanisms may represent an additional explanation for the lack of

result validation.78

Therefore, it is of great necessity that more collaborative

studies132,133 with adjustment for other potential cofounders (e.g.

gene–environment interactions with adjustment for pesticide expo-

sure,86 air pollution,134 diseases of the anterior segment of the eye,

preceded injury, trauma, surgical intervention or sore throat,130 time

spent handwriting per day and the writing time before dystonia

onset,135 genome methylation status) and a supportive functional

analysis be conducted in the future. In this way, the pathogenic

mechanisms of dystonia and the net effect of the genes could be

elucidated and, consequently, the inherent limitations of association

studies will be avoided.136

Certain limitations of the present review need to be acknowledged.

Firstly, supportive data regarding functional analysis of variants would

give more robustness to our conclusions. Moreover, we included

relevant studies regardless of the sample power and without any prior

quality assessment. Therefore, a possible confounding by population

stratification or technical factors cannot totally be excluded. Finally,

based on our search strategy procedure, it is possible that some eligible

studies might not have been identified. However, this is an inherent

limitation of such studies, and the inclusion of a large number of

studies does not affect the major conclusions of our results.

We should bear in mind that positive results from genetic association

studies require biological and functional evidence that the risk variant

is actually involved in the pathophysiology and the pathogenesis of the

relevant disease. Pathway-based analysis could facilitate more robust

analysis even of GWAS and provide additional biological insights

on the mechanisms of disease complex traits.137,138 Therefore, the

scientific reasoning could not be replaced by any single statistical value,

index, or test.105,139 As a consequence, by the correct interpretation of

statistical values, the misinterpretation of results could be avoided.140
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